(Following Paper ID	and Roll No.	to be	fille	d in	yo	ur A	ns	wer	Во	ok)
PAPER ID: 2786	Roll No.									

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13 OPERATIONS RESEARCH

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all the questions.

- (2) They carry equal marks.
- 1. Attempt any two parts of the following questions:
 - (a) Verify that the following linear programming problem has an unbounded optimal solution:
 - (i) graphically
 - (ii) Using the Simplex method:

Maximize $11x_1 + 7x_2$ subject to

$$5x_1 + 2x_2 \ge 20$$
$$3x_1 - 4x_2 \le 12$$
$$x_1, x_2 \ge 0.$$

- (b) Write the dual of the above problem.
- (c) Consider the following linear programming problem:

Maximize
$$2x_1 + 12x_2 + 7x_3$$

subject to $x_1 + 3x_2 + 2x_3 \le 10000$
 $2x_1 + 2x_2 + x_3 \le 4000$
 $x_1, x_2, x_3 \ge 0$.

The optimal solution is shown below, where z is the objective function and x_{λ} and x_{ζ} are slack variables:

	Z	$\mathbf{x_1}$	$\mathbf{x_2}$	\mathbf{x}_3	x_4	x ₅	RHS
z	1	12	2	0	0	7	28000
x ₄	0	-3	-1	0	1	-2	2000
x ₅	0	2	2	1	0	1	4000

- (i) Suppose that the right-hand-side of the second constraint is changed to $4000 + \Delta$. What is the range of Δ that will keep the basis of the foregoing tableau optimal?
- (ii) Find explicitly the optimal value z as a function of Δ for part (i).
- 2. Answer any two of the following:
 - (a) What will be the effect of subtracting 'a_i' from each column and a constant 'b_i' from each row of an assignment matrix {C_{ij}}. Prove the same mathematically.
 - (b) Construct a basic feasible solution by the North-West corner method and then find the optimal solution for the following transportation problem:

		Destinations						
		1	2	3	Supply			
Sources	Α	3	5	-2	3			
	В	2	3	4	2			
Requ	irement	1	2	2				

(c) Solve the following assignment problem as a transportation problem:

- 3. Answer any two of the following:
 - (a) Find the maximal flow from node 1 to node 7 in the following network:

- (b) In the above network, find out the shortest distance from (1) to (7)
- (c) What is the use of minimal cut typically in Network Flows Problem? Explain with the help of an example.

OR

Discuss CPM and various floats.

- 4. Answer any two parts of the following:
 - (a) Develop the expression for EOQ and the corresponding optimal cost.

- (b) What role maintenance have on machine's useful life? What role do you see of maintenance cost, machine cost, etc. in deciding the life of an equipment and thus its replacement?
- (c) A furniture manufacturer makes 25 chairs of a certain model daily requiring 100 legs per day. A machine can produce 200 legs per day. Each setup costs Rs. 4,000. Annual holding cost per leg is Rs. 16.00. The manufacturer runs his business for 250 days in a year. Determine as to how many legs be produced in each production lot for an objective of minimizing total of holding and setup cost. For how many working days, a production run will go?

5. Answer any two of the following:

- (a) The tuition fee payment window at the registrar's office is staffed by one clerk. Service times are exponentially distributed with an average of 6 minutes. Students arrive at the counter at the mean rate of 8 per hour and their number follows Poisson distribution. Determine:
 - (i) mean waiting time
 - (ii) average number of students waiting and
 - (iii) Clerk's idle period fraction.
- (b) Can we view inventory system as a queueing system? Explain with the help of an example problem.
- (c) Explain the concept of saddle point with reference to a rectangular problem. Discuss the graphical methodology for solving n×2 rectangular game problem.